# **Solutions**

def: Is a homogeneous mixture where different phases are not seen and is made up of a solute and solvent.





**Concentration:** is the proportion of solute/solvent in solution.





How can you make a drink more concentrated?

How can you make a drink more diluted?

Solutes, solvents, solutions and scallywags.mp4

## Formula to solve for concentrations

**Conversions:** 

1- to go from L to ml you must x 1 000



**2-** to go from mg to g you must ÷ 1 000 ex: 5 mg = 0.005 g 0.4 mg = 0.0004 g

### **Units used**

| %             | ppm                | 9/2    | mg/L     |
|---------------|--------------------|--------|----------|
| 20%)          | 20PPM)             | 209/2) | 20 mg/L) |
| 209<br>100 mL | 209<br>1000 000 mL | 20g // | .02 g    |

When doing the math you are making the concentration proportional. How?



Because the ratio

of solute/solvent
wice he kept constant.

79/L= 149/21= 219/3L



## Procedure to make a solution



1. Weigh 1.59 & solute 2. Put solute in 100 mL volumetric flask

3 add some solvent of Swirl 4. add water to line. 5. Check miniscus



#### **Solution Problems**



2. You have a 15 g/ 200 mL solution. How much solute use 450 mL only? sary if you want to

| Convert the following to percent concentration |                          |                               | . 1960                                                   |
|------------------------------------------------|--------------------------|-------------------------------|----------------------------------------------------------|
| 150 g/L                                        | 25 ppm                   | 37 g / 400 ml                 | 14 mg/L                                                  |
| 1509 = X<br>15% a<br>15% a<br>159              | 259 × /whl /whl .00 25%, | 319 x /20mL<br>9.25%<br>9.25% | 1000 = X<br>1000 = X<br>1000 = X<br>1000 = X<br>1000 = X |

4. Convert the following to ppm.

| 12 %                   | 28 ppm  | 30 g/ 500 ml                             | 24 mg /L |
|------------------------|---------|------------------------------------------|----------|
| 129 - X<br>120 000 PPM | 2011111 | 200 - 2000<br>2000 - 2000<br>2000 - 2000 | 24RM     |

5. Convert 0.5 mg/L to ppm.

6. Determine the order from least to most concentrated for the following solutions.

| a- 0.4 % | b- 10 g/L                  | c- 35 ppm                          | d- 15 mg/L                 |
|----------|----------------------------|------------------------------------|----------------------------|
| 4000 PPM | 10 000 (cu)                | 35PPM                              | 1598m                      |
| .4%      | 109 - X<br>100 /00<br>1°/6 | 25 - 25<br>CU - CUCCUN<br>1. 2600. | 2015/2<br>2005/2<br>2005/2 |

7. You have a 15 g/L solution, **explain the process** used when making the solution in a percent concentration.

8. What is the difference between a 15% concentration and a 20% concentration?

9. If blue algae in a lake reaches 7 ppm the water is considered dangerous to swim in and the lake must be closed. You test the water for the contaminant and find the algae is at  $0.003\ g/L$ . Is the water contaminated?

10. You have 2 types of soil. Soil A has a mercury concentration is 0.03 ppm and soil B has a concentration of 1.6%. If the lethal concentration of mercury is 0.0005 g/L determine if either soil is contaminated.

<sup>11.</sup> You have 25 mg of a solute dissolved in 40 L of water. What is the concentration in ppm?

#### Past exam Questions

1. A lake is considered polluted if the concentration of mercury exceeds 8 ppm.

You take a sample of three different lakes to verify if any are polluted.

Results from samples takes from lakes

| Lake   | Mercury concentration |
|--------|-----------------------|
| Lake 1 | 0.0005%               |
| Lake 2 | 2.5 mg/L              |
| Lake 3 | 0.085 g/L             |

Determine if any of the lakes have a lethal concentration of mercury.

2. Two lakes are being tested for different pollutants that can harm aquatic life. Below shows the pollutants with their lethal doses.

Lethal dose for pollutants

| Pollutant 1 | 20 ppm  |  |
|-------------|---------|--|
| Pollutant 2 | 0.4 ppm |  |
| Pollutant 3 | 0.9 ppm |  |

The table below shows the results of sample water taken from the 4 lakes and each pollutant.

|        | Pollutant 1 | Pollutant 2 | Pollutant 3 |
|--------|-------------|-------------|-------------|
| Lake 1 | .015 g/L    | 0.006 %     | 18 mg/L     |
| Lake 2 | 0.15 g/L    | 0.00003 %   | 1.6 mg/L    |

Determine if either lake has any pollutants in it.

### Attachments

- Concentration.mp4
- Solutes\_solvents\_solutions\_and\_scallywags.mp4
- Solutes, solvents, solutions and scallywags.mp4