ATOMIC THEORY

- People have been fascinated with matter for a long time.
 - What is matter?
 - What is all this "stuff" around us made of?
 - Can it be broken down?
 - Are there different types of matter?

Time to develop a model...

- Democritus (~465BC)
 - Believed that the whole universe was made up of 2 things:
 - Tiny particles (atoms) and empty space
 - "The universe is composed of two elements: the atoms and the void in which they exist and move."

- Aristotle (~340BC)
 - Did not agree with Democritus
 - Did not believe in atoms

- He said all matter was composed of **5 elements**:
 - Earth, Water, Air, Fire and Aether (divine element)

FAST FORWARD THROUGH TIME...

John Dalton (1808)

- Since the time of Democritus and Aristotle a lot of advances had been made in Chemistry... and these generally involved the idea that matter was composed of particles
 - Ex: Law of Conservation of Mass

- John Dalton (1808)
 - Matter is composed of <u>tiny indivisible particles called atoms</u>.
 - Atoms are the smallest units of matter; they cannot be broken up further
 - All atoms of a <u>single element</u> are <u>identical</u>
 - All He atoms are identical; all Xe atoms are identical, etc
 - The atoms of different elements are different
 - He atoms are different from Xe atoms
 - Atoms of different elements could combine to form <u>compounds</u>

DALTON'S ATOMIC MODEL 1803

- J.J.Thomson (1897)
 - Discover that there were <u>particles that were</u> <u>smaller and lighter than the smallest</u> <u>atoms known</u> (Hydrogen)
 - Therefore atoms had small building blocks that made them

- Ernest Rutherford (1911)
- Discovered that the atom must be made up mostly of empty space, with small electrons floating around and a more massive central positive (+) nucleus

- Niels Bohr (1913)
- Another one of Thomson's students
- Bohr hypothesized that <u>electrons must be in</u> <u>specific orbitals around the nucleus</u>
- Also determined that each orbital (energy level) could only accommodate a <u>certain number of</u> <u>electrons</u>
 - We'll come back to this later!

BOHR'S ATOMIC MODEL 1913

- Rutherford-Bohr Model
- Rutherford later made the discovery of the proton
 - The nucleus is not just one large positive particle, but rather made up of <u>several positive particles</u>
 (protons) depending on the element

- Rutherford-Bohr Model
 - It is this <u>number of protons that determines the</u> <u>element!</u>
 - Different elements have different numbers of protons
 - Atoms have the <u>same number of protons (+) as</u>
 <u>electrons (-)</u> so that they are overall <u>neutral (no charge)</u>

RUTHERFORD-BOHR MODEL

THE BOHR-RUTHERFORD MODEL

- Protons → in the <u>nucleus</u>
 - Number of protons = <u>atomic number</u> on Periodic
 Table
- Electrons \rightarrow in **orbitals** around the nucleus
 - The total number of electrons is the same as the number of protons
 - overall charge has to be neutral

THE BOHR-RUTHERFORD MODEL

- Remember: each orbital can only hold a certain number of electrons
 - Ist orbital: max 2 e-
 - 2nd orbital: max 8 e-
 - 3rd orbital: max 8 e-

PERIODIC TABLE

READING THE PERIODIC TABLE

PERIODIC TABLE

Atomic Number

- Tells you the <u>number of protons</u> each atom of an element has
- This is <u>different for every element</u>
 - This differing number of protons gives each element <u>different</u>
 <u>properties</u>

PERIODIC TABLE

Atomic Mass

- Protons have a mass of <u>1 amu (atomic mass unit)</u>
- Neutrons also have a mass of 1 amu
- Electrons are so small they have <u>almost no mass</u>
 - We say their mass is <u>negligible</u>

READING THE PERIODIC TABLE

Therefore must have 2 neutrons

Helium has 2 protons

Has a mass of ~4 amu

Matter

Anything that <u>takes up space and has mass</u>

Atom

- Smallest unit of matter
- Made of <u>electrons</u>, <u>neutrons</u>, <u>protons</u>
- Centre is called the <u>nucleus</u>

Nucleus

- Centre of an atom
 - Contains the protons and neutrons
- Proton
 - Sub-particle of an atom with a positive charge
 - Found in the nucleus

Electron

- Sub-particle of an atom with a negative charge
- Found in the orbits around the nucleus

Neutron

- Sub-particle of an atom with a neutral charge
- Found in the nucleus

Nucleus

- Centre of an atom
 - Contains the protons and neutrons

Element

Substance made from one type of atom only

Molecule

A group of atoms that are chemically bonded

Compound

• A molecule formed by combining two or more different types of atoms

These are compounds