Changes in Matter

Def:
There are 4 types of changes: chemical, physical, neutralization and combustion.

Review

Chemical changes signs	Physical changes signs		
•	•		
•	•		

Neutralization

Def: _				

Once neutralization has occurred, acids and bases are no longer present. Instead you have created two new substances.

Examples

$$Ca(OH)_2 + 2 HBr \Rightarrow$$

$$AI(OH)_3 + 3 HF \Rightarrow$$

Molecules always produced are?

Neutralizations labs using indicators

A- How to determine whether an unknown is an acid, base or neutral solution?

B- How to neutralize unknown once its origin is determined?

C- What if you have many indicators to choose from?

Past Exam questions

1. In neutralizing sulfuric acid, H₂SO₄, with caustic soda, NaOH, sodium sulfate, Na₂SO₄, and water are produced. Which equation represents this chemical reaction?

- A) $H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$
- B) $Na_2SO_4 + 2 H_2O \rightarrow H_2SO_4 + 2 NaOH$
- C) $H_2SO_4 + NaOH \rightarrow Na_2SO_4 + 2 H_2O$
- D) Na₂SO₄ + H₂O \rightarrow H₂SO₄ + 2 NaOH