Fluid Worksheet

1. What is the definition of a fluid?

A substance that has no definite form; is able to flow in all chrections
2. Why are solids not fluids?

Because they have a defence
3. Why is a gas considered a compressible fluid, but a liquid is considered a incompressible fluid?
the volume of a gas can be realuced by exering a force on the fluid, pushing the particles closer togecter. In a liquial it is impossible to decrease the volume because the parlucles are alreaaly close together 4. Define the term pressure.

The measure of the amount of a retain area. Measured in pascals exerted an
5. In a liquid, which 2 variables affect pressure?
concentration, temperature, volume
6. In a gas, what affects the pressure?
volume temperature
7. What three factors affect collision?

* of partacles/concentralcon volume

8. What type of relationship does volume and pressure have in a gas?
move pressure the smaller the volume
9. If the volume of a substance increases, what happens to the pressure inside of it?
pressure decreases
10. Circle each statement below that applies to fluids.
a) Sand flowing through an hourglass
(b) A substance that can spread and take a container's shape
c) A substance that can be deformed \rightarrow go
d) A fluid that can be a liquid and a solid
(e) A gas that contains solid particles in suspension
11. Match each substance below to the corresponding type of fluid. More than one substance may be associated with a type of fluid.

| Substance Type of fluid |
| :--- | :--- |
| a) Cream 1. Compressible fluid
 b) Molasses
 c) Propane gas 2. Incompressible fluid
 d) Helium |

12. Use the following terms to complete the sentences below.

particles	fluid	incompressible	volume	close to
liquid	decreases	pressure	plunger	far from

The \qquad of a gas \qquad when the \qquad of a syringe is pushed down. The \qquad of a gas are very \qquad far from each other. Therefore, gas is a compressible \qquad . The volume of a
\qquad varies very little under \qquad pressure because particles are very each other. Therefore, liquids are \qquad incompressibleluids.
13. How does the particle model explain the relationship among pressure, volume and temperature of compressible fluids? Complete the following sentences.
a) When the temperature and number of \qquad are \qquad increase , pressure will increase if volume \qquad . On the other hand, under the same conditions, pressure decreases if volume \qquad .
b) At a stable \qquad , if fluid volume increases, pressure \qquad careases because fluid (gas) particles \qquad out and the number of collisions decreases.
c) If the number of particles is \qquad , there are fewer \qquad and pressure is \qquad at a stable temperature and constant volume.
d) By maintaining a stable number of particles, the volume of a \qquad compressive fluid is inversely proportional to the \qquad .
14. Look at the following photos.

Find the compressible fluids and the incompressible fluids in these photos. Present your answers in the table below.

Compressible fluids
 Propane

Incompressible fluid

\qquad
\qquad
15. The statements below refer to fluid pressure. /3Circle each statement that applies to all fluids.
Box each statement that applies only to compressible fluids.
Mark with a triangle each statement that applies only to incompressible fluids.
There can only be one symbol per statement.
a) The number of collisions between particles of these fluids determines their pressure.
b) Pressure exerted by these fluids depends on the depth in the fluid of the reading and not on the total amount of the fluid.
c) Pressure exerted by these fluids depends on the number of particles, temperature and volume of the fluid.
d) Since particles of these fluids are constantly moving, pressure exerted in a closed environment is the same in all directions.
e) Pressure is greatest at the bottom of the container in which the fluid is placed.
f) Pressure exerted on an object by these fluids depends on depth and density of the fluid.

