Circuits

def: Electrons flowing in a continual closed loop.

Parts of a circuit

1- Power supply: gives the *push* the electrons need to travel in the circuit.

Types: 1- photovoltaic cell: generates current when exposed to light. ex: solar calculator or watch.

2- Batteries and generators.

2-Wires: Allows the *conduction* of electrons and connects all the parts of the circuit.

3- Control or switch: **controls** the ability for electrons to travel in a circuit.

A magnetic switch is often used.

open switch = no current closed switch = current

4- Fuses or breakers: **Protection.** Completely stops electron flow when too much is asked for.

5-Transformers: Device used to transfer electrical energy from one circuit to another or to transfer to another form of energy. Ex: light, sound or motor

6-Resistors: Stop or slow down the flow of electrons in a circuit.

Symbols

Resistor	Light bulb	Wire	Open switch	Closed switch
			S -	
Power supply	Fuse	Voltmeter	Ammeter	Motor
1-	25	V	A	3

voltmeter: measures the voltage of the circuit.

ammeter: measures the current intensity of the circuit.

Types of circuits

Series	Parallel
one pathway	multiple pathways

March 06, 2017

Symbols on a circuit

Ammeter, switches and fuses: All are placed the same way on a circuit, directly on a wire. Depending where they are placed they can control a part, parts or the whole circuit. The way they are placed is called in 'series'.

Voltmeters: Are placed in 'parallel' which means above or below the resistor or power supply.

Putting it all together

Example 1:

- Circuit with one pathway
- 4 light bulbs
- Voltmeter for total voltage, (Vs)
- Voltmeter for L₁, (V₁)
- Voltmeter for L₂ and L₃ together, (V₂)
- Voltmeter for L₂, (V₃)
- Voltmeter for L₃ and L₄ together, (V₄)
- Ammeter for total current, (A₁)
- Ammeter for current of L₁, (A₂)
- Fuse for the whole circuit.
- Fuse for L₃
- Switch for L₁
- Switch for all lights

Example 2:

- Circuit with 4 pathways with resistors
- Voltmeter for total voltage, (Vs)
- Voltmeter for R₂, (V₂)
- Ammeter for total current, (As)
- Ammeter for R₃ and R₄ together, (A₁)
- Fuse for the whole circuit
- Fuse for R₂
- Fuse for R₃ and R₄ together
- Fuse for R₄
- Switch for R₃
- Switch for R₄

 $1. \quad A \ mystery \ circuit \ consists \ of two \ light \ bulbs \ (L_1 \ and \ L_2), \ a \ switch, \ and \ a power \ supply. \ The \ following \ table \ shows \ what \ happens \ to \ both \ light \ bulbs \ when \ the \ switch \ is \ opened \ or \ closed.$

Test	Observations
Open the switch	L1 stays onL2 goes out
Close the switch	L1 stays onL2 comes on

Which diagram correctly represents this mystery circuit?

2. The electrical circuit of a magnetic alarm system is illustrated in the diagram below $\,$

Which of the following shows the correct match between the five numbered components in this circuit diagram and their corresponding electrical functions?

When a grocery store check-out clerk is ready to serve customers:

- he must press a switch to turn on a light indicating that the cash is open
- he can start the conveyer belt motor, if necessary, by using another

switch

- he can start the conveyer belt motor only if the light is on to indicate that his cash is open

Comparing series and parallel circuits and their relationship with current intensity and resistance A series circuit has pathway(s).
This means current must go throughall
resistors. Since they are going through all
resistors there is a <u>high</u> resistance. Since
there is a high resistance there will be
lower current intensity. If you add
another resistor to the circuit the resistance of
the circuit which will cause the
current intensity to If the
current intensity is low, power (P♠) and energy
(E € Nt) will also be
+
A parallel circuit has pathway(s).
This means current will be shared
amongst the resistors. Since current is not going
through each resistor, the resistance of the
circuit is Since the
resistance is low, the current intensity of the
circuit will be If the

current intensity is high, power (P⊕V) and

energy (E-i)vt) will also be _______

To summarize:

Series circuit = 1 pathway = high resistance = low current intensity = low power and energy

Parallel circuit = 2 pathways = low resistance = high current intensity = high power and energy