Specific Heat Worksheet

1. A beaker contains 610.0 g of water at $15.0^{\circ} \mathrm{C}$. After being heated for 22 minutes the water's temperature rose to $48.0^{\circ} \mathrm{C}$. Calculate the heat energy absorbed.
2. A beaker contains 270 g of water at $15^{\circ} \mathrm{C}$. The water absorbs 24000 J of energy. What is the water's final temperature?
3. Oil has a specific heat capacity of $2.0 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$. If 200 g of oil absorbs 5005 J of heat energy to reach a final temperature of $40.0^{\circ} \mathrm{C}$, what was its initial temperature?
4. A beaker contains 405 g of water at $19^{\circ} \mathrm{C}$. After being heated for 42 minutes the water's temperature reaches $55^{\circ} \mathrm{C}$. Calculate the heat energy absorbed.
5. You pour 250 ml of water into a glass just out of the freezer. After a while, you notice that the temperature of the water has fallen from $18^{\circ} \mathrm{C}$ to $12^{\circ} \mathrm{C}$.
a- Is this an energy transfer or transformation?
b- Calculate the heat energy transfer.
c- Explain if the water gives off or absorbs energy.
d- Explain of the glass gave off or absorbed energy.
6. Syrup has a specific heat capacity of $1.3 \mathrm{~J} / \mathrm{g}$. ${ }^{\circ} \mathrm{C}$. If 200 g of syrup absorbs 5000 J of heat energy to reach a final temperature of $55^{\circ} \mathrm{C}$, what was its initial temperature?
7. What is the mass of water if it absorbs 65000 J of heat energy to go from a temperature of $75^{\circ} \mathrm{C}$ to $94^{\circ} \mathrm{C}$?
8. What is honey's specific heat if 90.0 g are heated for 18.0 minutes and experience a temperature change of $40.0^{\circ} \mathrm{C}$ absorbing 7500.0 J of heat?
9. Water's specific heat is $4.19 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$. Olive oil's specific heat is $1.9 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$.
a- Which one would get hotter faster?
b- Which one would keep its heat for longer?
c- Why would we put water in a car's cooling system over olive oil?
10. When preparing tea, Naomi pours 205 g of boiling water into a porcelain cup. The cup also weighs 205 g . Naomi wants to find the specific heat of the porcelain cup. She obtained the following results:

- Before pouring the water into the tea cup:
- temperature of cup $=25^{\circ} \mathrm{C}$
- Initial temperature of water $=105^{\circ} \mathrm{C}$
- After pouring the water into the cup and stirring gently:
- Final temperature of water $=88^{\circ} \mathrm{C}$

Calculate the specific heat capacity of the cup.

