Specific Heat

Def: The amount of heat required to raise the temperature of 1 g of a substance by 1 $^{\circ}$ C.

Specific heat is a characteristic property. The higher SH a substance has, the longer it takes to get hot, but the more heat it absorbed so it will take longer to lose the heat.

Formula

$$Q = mc\Delta T$$

Variables	Stands for	Unit
Q	heat energy	J
m	mass	g
С	specific heat	J/g.℃
Т	Temperature	$^{\circ}\mathbb{C}$
ΔΤ	Change in temperature	$^{\circ}$ C

Temperature formulas:

- To get ΔT: final temperature initial temperature
- To get initial temperature: FT -ΔT
- To get final temperature: IT + ΔT
 - Conversion kg-g x 1 000
 - Specific heat of water 4.19 J/g [∞]

Using triangle to isolate:

* 100ml quater = 100g be course density's 19/ml

Practice questions:

1. The mass of water is 210 g, its initial temperature was 15° . After heating it for 22 minutes, the water's temperature was 65° . Calculate the heat energy absorbed.

210gx4.19Jg.°x×(69-19) 43995 44000 J

2. There was 200 g of water with an initial temperature of $15\,^{\circ}$. The water had absorbed 24 000 J of energy. What was the water's final temperature?

 $FT = TT + \Delta T$ $15^{\circ} + 30^{\circ}$ $45^{\circ} + 30^{\circ}$ $30^{\circ} + 30^$

3. Oil absorbed 55 000 J of heat and has a specific heat of $2.0 \, \text{d/J} \,^{\circ}$. What was oil's temperature if $2.2 \, \text{kg}$ had a final temperature of $70.0 \,^{\circ}$?

temperature of 70.0° ? $TT = FT - \Delta T$ 70.0 - 13 57C 13° 13° 13°

4. What was the mass of water if it absorbed 31 000 J of heat and had a temperature change of $54\,^{\circ}$?

M= Q 31008 4.198/g. \$x 54.2 137.010... 9 1409

5. What is vinegar's specific heat if 30.0 g is heated for 18 minutes and has a temperature change of 26 $^{\circ}$ C to produce 50 500 J of heat?

C= Q 50505 30.09 x 26°C 64.74... 5/g°C 655/g.°C

Specific Heat of water.mp4