Significant Figures Enriched Notes

Which digits are significant?

- Rule \#1: All non-zero digits are significant.

24 has two sig figs, 24.1 has 3 sig figs

- Rule \#2: All zeros bounded by non-zero integers are significant.

2004 has four sig figs 20.04 also has 4 sig figs

- Rule \#3: Zeros placed before other digits (leading zeros) are not significant.
0.024 has 2 sig figs
- Rule \#4: Zeros at the end of a number are significant ONLY if they come after a decimal point. $\quad 2.40$ has three sig figs 240 only has 2 sig figs

Practice:

409.25	0.050	0.003500
83	300900	0.916
98.207	4.67×10^{-7}	0.200
0.001	45.030	5234000
4.3×10^{2}	35000	150000001
0.003050	0.004400	460090
4200	16.8090	50.00300

Rules for Addition and Subtraction

- Answers must be rounded to the same decimal place (not sig figs) as the least number of decimal places in any of the numbers being added or subtracted.

Ex. $2.42+14.2+0.6642=17.2842$ becomes

- If there is no decimal point in one of the numbers, all decimal points are dropped.

Rules for Multiplication and Division

- The number of sig figs in the answer should be the same as in the number with the least sig figs being multiplied or divided.

When doing multiple steps in a word problem

- Solve each step using order of operations.
- Do not round off any number.
- Once you have your final answer, then you use significant figures according to the last step you do.

Ex: $\quad \frac{125 \times 345.5}{65.3+16.6}=\frac{43187.5}{81.9}=527.3199023$ becomes

Exceptions and special circumstances

1. Adding and scientific notation
$\left(5.8 \times 10^{2}\right)+368$
4.87×10^{5}

- When adding and using SN, the exponents must be the same.

You have 2 options to solve the problem.
1- Convert 5.8×10^{2} to 580 and get rid of the exponent $580+368$
2- Convert 368 to the same exponent so it becomes 3.68×10^{2}
$5.8 \times 10^{2}+3.68 \times 10^{2}$
Both are correct, but option 1 is easier
2. Rounding off and keeping a zero as a significant digit

$\underline{8253.0569}=649.847$

12.7

- In this example you must keep 3 sig figs in your answer.

When rounding off 649.847 should become 650 .

Problem, 650 only has 2 sig figs
Solution: put a - above the zero, this makes it significant. Becomes
3. Having many insignificant zero's and addition

- When adding the following: $136.2+2500000+14.01$

We get 2500150.21 which should become 2500150 .

EXCEPT, we have to use sig figs, and the addition rule says that we must round to the least precise decimal place. Therefore, because 2500000 is only precise to the hundred thousands place, we need to round the answer to 2500000.

- You cannot be more precise than your least most precise number.

This is true for any additions that end in non sig. zero's. ex-
$5500+15=5515$ but becomes
$310+6=316$ but becomes
$259500+1670+23=261193$ but becomes

4. Converting units

- When converting units, sig figs need to be maintained.

Ex 1-4.0 cm to m becomes 0.040 m not 0.04 m
Ex 2-1250 mL becomes 1.25 L not 1.250 L

5. Constants

- When there is a constant in a formula, the constant does not count as a significant figure.
ex: Coulomb's constant $9.00 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$

SIG FIGS PRACTICE

1. How many sig figs are in each of the following numbers?
a) 0.09304
b) 6.58×10^{7}
c) 0.0200
d) 0.10101
e) 4.508
f) 1204.0
g) 2.9×10^{-3}
h) 2.4×10^{7}
I) 460
J) 23.230
2. Solve using the correct number of significant figures.
b- $187 \times 0.008 \div 14.2887=0.104698118=$
c- $911 \times 677 \times 0.0089=5489.0483=$
d- $8.0 \times 10^{5} \div 4.02 \times 10^{9}=0.000199005=$
e- $\left(1.23 \times 10^{5}\right)\left(1.445 \times 10^{7}\right) \div 0.023=7.727608696 \times 10^{13}=$
