Reading Coloured Resistors

1. Using the international color code below, determine the value of the resistances the two resistors 1 and 2.

Color	Significant Digit	Decimal Multiplier	Tolerance		
Black	0	1	-		
Brown	1	10	-		
Red	2	10 ²	-		
Orange	3	10 ³	-		
Yellow	4	10 ⁴	-		
Green	5	10 ⁵	-		
Blue	6	10 ⁶	-		
Violet	7	10 ⁷	-		
Grey	8	10 ⁸	-		
White	9	10 ⁹	-		
Gold	-	0.1	5%		
Silver	-	0.01	10%		
Transparent	-	-	20%		

2. The resistance of a resistor can be determined using the three coloured bands on the resistor as well as a colour code.

Which of the resistors illustrated below has a resistance of 4200 Ω ?

3. The resistance of a resistor can be determined using the four coloured bands on the resistor as well as a colour code. The table below gives some the colour code for resistors.

Band	Black	Red	Yellow	Blue	Grey	Silver
colour						
Digit	0	2	4	6	8	
Multiplier	1	10^{2}	10^{4}	10^{6}	10^{8}	
Tolerance	± 20%					± 10%

What would the colours on the resistor be if the resistance of the resistor was $4200 \Omega \pm 10\%$?

A) Silver, red , yellow, blue

B) Silver, red, red ,yellow

- C) Yellow, red, black, silver
- D) Yellow, red, red, silver
- 4. A diagram of a coded resistor, with each coloured band labelled as a number, is shown below. Resistor

Resistor Colour Code Chart

Colour	Black	Brown	Red	Orange	Yellow	Green	Blue	Purple	Grey	White
Digit	0	1	2	3	4	5	6	7	8	9
Multiplier	10^{0}	10 ¹	10^{2}	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸	10 ⁹

Tolerance: Gold \pm 5%, Silver \pm 10%, none \pm 20%

The resistance of this resistor is $340 \ \Omega \pm 5\%$.

What is the colour of the third band on the resistor?

A) Black B) Brown

C) Orange

D) Red