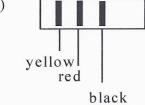
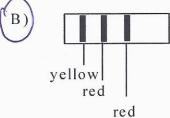

Reading Coloured Resistors

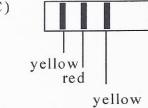
1. Using the international color code below, determine the value of the resistances the two resistors 1 and 2.

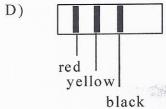
Color	Significant Digit	Decimal Multiplier	Tolerance	
Black	0	1		
Brown	1	10		
Red	2	10 ²	-	
Orange	3	10 ³		
Yellow	4	104		
Green	5	10 ⁵		
Blue	6	10 ⁶		
Violet	7	10 ⁷		
Grey	8	108		
White	9	10 ⁹		
Gold	-	0.1	5%	
Silver	-	0.01	10%	
Transparent		-	20%	



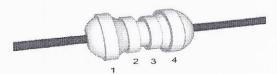

2. The resistance of a resistor can be determined using the three coloured bands on the resistor as well as a colour code.

Colour Codes
Black
Brown
Red
Orange
Yellow
Green


Which of the resistors illustrated below has a resistance of 4200 Ω ?


A)

C)


3. The resistance of a resistor can be determined using the four coloured bands on the resistor as well as a colour code. The table below gives some the colour code for resistors.

Band colour	Black	Red	Yellow	Blue	Grey	Silver
Digit	0	2	4	6	8	
Multiplier	1	10^{2}	104	10 ⁶	108	
Tolerance	± 20%					± 10%

What would the colours on the resistor be if the resistance of the resistor was 4200 $\Omega \pm 10\%$?

- A) Silver, red, yellow, blue
- B) Silver, red, red, yellow

- C) Yellow, red, black, silver D) Yellow, red, red, silver
- 4. A diagram of a coded resistor, with each coloured band labelled as a number, is shown below. Resistor

Resistor Colour Code Chart

Colour	Black	Brown	Red	Orange	Yellow	Green	Blue	Purple	Grey	White
Digit	0	1	2	3	4	5	6	7	8	9
Multiplier	10^{0}	10 ¹	10^{2}	10^{3}	10 ⁴	10 ⁵	10^{6}	10^{7}	10 ⁸	10 ⁹

Tolerance: Gold \pm 5%, Silver \pm 10%, none \pm 20%

The resistance of this resistor is 340 $\Omega \pm 5\%$.

The resistance of	11115 16515101 15 340 22	<i> </i>		
What is the colou	r of the third band on	the resistor?		
A) Black	B) Brown	C) Orange	D) Red	